2024-03-07 14:03:22 +08:00
|
|
|
|
using System;
|
|
|
|
|
using System.Collections.Generic;
|
|
|
|
|
using System.Data;
|
|
|
|
|
using System.Diagnostics;
|
|
|
|
|
using System.Diagnostics.Contracts;
|
|
|
|
|
using System.Drawing;
|
|
|
|
|
using System.Drawing.Imaging;
|
|
|
|
|
using System.IO;
|
|
|
|
|
using System.Linq;
|
|
|
|
|
using System.Reflection;
|
|
|
|
|
using System.Runtime.InteropServices;
|
|
|
|
|
using System.Threading;
|
|
|
|
|
using LeatherApp.Utils;
|
|
|
|
|
using Models;
|
|
|
|
|
using OpenCvSharp;
|
|
|
|
|
using OpenCvSharp.Extensions;
|
|
|
|
|
|
|
|
|
|
namespace LeatherApp.Device
|
|
|
|
|
{
|
|
|
|
|
public class DefectLib : IDisposable
|
|
|
|
|
{
|
|
|
|
|
//private const string dll_path = "yoloOrt.dll";
|
|
|
|
|
//[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
|
|
|
|
|
//extern static IntPtr CreateDetector(string model_path, string labels_path, bool is_gpu, int numberThreads);
|
|
|
|
|
|
|
|
|
|
private const string dll_path = "yolo_trt.dll";
|
|
|
|
|
[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
static extern IntPtr CreateDetector(string model_path);
|
|
|
|
|
|
|
|
|
|
[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
|
|
|
|
|
extern static bool DestroyDetector(IntPtr detector);
|
|
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 非0值表示成功,0表示失败 返回小图张数
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="detector"></param>
|
|
|
|
|
/// <returns></returns>
|
|
|
|
|
[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
static extern int GetBatchSize(IntPtr detector);
|
|
|
|
|
|
|
|
|
|
//[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
|
|
|
|
|
//extern static bool Detect1(IntPtr detector, ref byte bgrs_data,
|
|
|
|
|
// int image_num, int width, int height, int channels,
|
|
|
|
|
// float conf_threshold, float iou_threshold,
|
|
|
|
|
// ref int output, int output_size, ref int object_num);
|
|
|
|
|
[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
static extern bool Detect(IntPtr detector, ref byte bgrs_data,
|
|
|
|
|
int image_num, int width, int height, int channels,
|
|
|
|
|
float conf_threshold, float iou_threshold,
|
|
|
|
|
ref float output, int output_size, ref int object_num,
|
|
|
|
|
int expand_pixel);
|
|
|
|
|
|
|
|
|
|
//-----
|
|
|
|
|
//private const string dll_path = "yolo_trt .dll";
|
|
|
|
|
//[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
//static extern IntPtr CreateDetector(string model_path);
|
|
|
|
|
|
|
|
|
|
//[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
//static extern bool DestroyDetector(IntPtr detector);
|
|
|
|
|
|
|
|
|
|
//[DllImport(dll_path, CharSet = CharSet.Unicode, CallingConvention = CallingConvention.StdCall)]
|
|
|
|
|
//static extern bool Detect(IntPtr detector, ref byte bgrs_data,
|
|
|
|
|
// int image_num, int width, int height, int channels,
|
|
|
|
|
// float conf_threshold, float iou_threshold,
|
|
|
|
|
// ref int output, int output_size, ref int object_num);
|
|
|
|
|
|
|
|
|
|
//---
|
|
|
|
|
private IntPtr detector = IntPtr.Zero;
|
|
|
|
|
private readonly int image_width = 2048;
|
|
|
|
|
private readonly int image_hight = 2048;
|
|
|
|
|
private readonly int image_channels = 3;
|
|
|
|
|
private readonly int image_bytes = 2048 * 2048 * 3;
|
|
|
|
|
private readonly int detect_elem_size = 7; //维度数据结果,x y w h conf classid
|
|
|
|
|
private readonly int detect_max_object_num = 20;//这个指的是一张子图可能最多给你返回的目标个球
|
|
|
|
|
//
|
|
|
|
|
public Action<int, int> QueueCountEvent;//0/1/2, 数量
|
|
|
|
|
public Action<DateTime,WarningEnum, string> WarningEvent;
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 检测结果JSON(原图,结果)
|
|
|
|
|
/// </summary>
|
|
|
|
|
public Action<DefectTask> finishEvent;
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 是否打开设备成功
|
|
|
|
|
/// </summary>
|
|
|
|
|
public bool IsInit { get; private set; } = false;
|
|
|
|
|
|
|
|
|
|
string rootPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);
|
|
|
|
|
private Thread t_task, t_task_operation ,t_task_maketag;
|
|
|
|
|
//=======task list
|
|
|
|
|
private List<DefectTask> taskList = new List<DefectTask>();
|
|
|
|
|
private List<DefectTask> taskOperationList = new List<DefectTask>();
|
|
|
|
|
private List<DefectTask> taskMakeTagList = new List<DefectTask>();
|
|
|
|
|
|
|
|
|
|
private string preModelName = "";
|
|
|
|
|
public DefectLib()
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
public bool start()
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
//detector = CreateDetector(Config.model_path, Config.labels_path, true, 6);
|
|
|
|
|
//if (detector == IntPtr.Zero)
|
|
|
|
|
// throw new Exception("模型初始化失败!");
|
|
|
|
|
preModelName = "";
|
|
|
|
|
|
|
|
|
|
IsInit = true;
|
|
|
|
|
taskList.Clear();
|
|
|
|
|
taskOperationList.Clear();
|
|
|
|
|
taskMakeTagList.Clear();
|
|
|
|
|
|
|
|
|
|
t_task = new System.Threading.Thread(runStep);
|
|
|
|
|
t_task.IsBackground = true;
|
|
|
|
|
t_task.Start();
|
|
|
|
|
|
|
|
|
|
t_task_operation = new System.Threading.Thread(run2);
|
|
|
|
|
t_task_operation.IsBackground = true;
|
|
|
|
|
t_task_operation.Start();
|
|
|
|
|
|
|
|
|
|
t_task_maketag = new System.Threading.Thread(run3);
|
|
|
|
|
t_task_maketag.IsBackground = true;
|
|
|
|
|
t_task_maketag.Start();
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now,WarningEnum.High, ex.Message);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
public void stop()
|
|
|
|
|
{
|
|
|
|
|
if (!IsInit) return;
|
|
|
|
|
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
IsInit = false;
|
|
|
|
|
//timer.Elapsed -= Timer_Elapsed;
|
|
|
|
|
preModelName = "";
|
|
|
|
|
//释放模型
|
|
|
|
|
if (detector != IntPtr.Zero)
|
|
|
|
|
{
|
|
|
|
|
DestroyDetector(detector);
|
|
|
|
|
detector = IntPtr.Zero;
|
|
|
|
|
}
|
|
|
|
|
if (t_task != null)
|
|
|
|
|
{
|
|
|
|
|
bool b = t_task.Join(5000);
|
|
|
|
|
if (!b) t_task.Abort();
|
|
|
|
|
t_task = null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (t_task_operation != null)
|
|
|
|
|
{
|
|
|
|
|
bool b = t_task_operation.Join(5000);
|
|
|
|
|
if (!b) t_task_operation.Abort();
|
|
|
|
|
t_task_operation = null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (t_task_maketag != null)
|
|
|
|
|
{
|
|
|
|
|
bool b = t_task_maketag.Join(5000);
|
|
|
|
|
if (!b) t_task_maketag.Abort();
|
|
|
|
|
t_task_maketag = null;
|
|
|
|
|
}
|
|
|
|
|
taskList.Clear();
|
|
|
|
|
taskOperationList.Clear();
|
|
|
|
|
taskMakeTagList.Clear();
|
|
|
|
|
}
|
|
|
|
|
catch { }
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
///
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="sumWidth">多个相机图像总宽(外部去除重合部分)</param>
|
|
|
|
|
/// <returns></returns>
|
|
|
|
|
public int GetWidthForResize(int sumWidth)
|
|
|
|
|
{
|
|
|
|
|
int count =(int) Math.Round(sumWidth * 1.0f / image_width, 0);
|
|
|
|
|
return count * image_width;
|
|
|
|
|
|
|
|
|
|
//int count = sumWidth / image_width;
|
|
|
|
|
////int remainder = sumWidth % image_width;
|
|
|
|
|
//if (count % 2 == 0)
|
|
|
|
|
// return count * image_width;
|
|
|
|
|
//else
|
|
|
|
|
// return count * image_width+ image_width;
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 保存图片
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="Img"></param>图片
|
|
|
|
|
/// <param name="pictureUrl"></param>保存路径
|
|
|
|
|
/// <param name="pictureName"></param>保存名称
|
|
|
|
|
private void SaveImage(Bitmap Img, string pictureUrl, string pictureName)
|
|
|
|
|
{
|
|
|
|
|
if (!Directory.Exists(pictureUrl))
|
|
|
|
|
{
|
|
|
|
|
Directory.CreateDirectory(pictureUrl);
|
|
|
|
|
}
|
|
|
|
|
FileInfo FileUrl = new FileInfo(pictureUrl);//防止路径中有日期导致路径错误
|
|
|
|
|
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
using (Bitmap bitmap = new Bitmap(Img))
|
|
|
|
|
{
|
|
|
|
|
using (MemoryStream stream = new MemoryStream())
|
|
|
|
|
{
|
|
|
|
|
bitmap.Save(stream, ImageFormat.Bmp);
|
|
|
|
|
System.Drawing.Image img = System.Drawing.Image.FromStream(stream);
|
|
|
|
|
//img.Save(FileUrl +"\\"+ pictureName);
|
|
|
|
|
//img.Dispose();
|
|
|
|
|
string szURL = FileUrl + "\\" + pictureName;
|
|
|
|
|
img.Save(szURL, ImageFormat.Bmp);
|
|
|
|
|
img.Dispose();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (Exception)
|
|
|
|
|
{
|
|
|
|
|
if (Img != null)
|
|
|
|
|
{
|
|
|
|
|
Img.Dispose();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
private void runStep()
|
|
|
|
|
{
|
|
|
|
|
int step = 0;
|
|
|
|
|
while (IsInit)
|
|
|
|
|
{
|
|
|
|
|
if (taskList.Count < 1)
|
|
|
|
|
{
|
|
|
|
|
Thread.Sleep(0);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
step = 1;
|
|
|
|
|
var task = pop();
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
if (task != null)
|
|
|
|
|
{
|
|
|
|
|
Stopwatch stopwatch = Stopwatch.StartNew();
|
|
|
|
|
step =2;
|
|
|
|
|
if (preModelName != task.modelName)
|
|
|
|
|
{
|
|
|
|
|
step = 3;
|
|
|
|
|
//先释放模型
|
|
|
|
|
if (detector != IntPtr.Zero)
|
|
|
|
|
{
|
|
|
|
|
step = 4;
|
|
|
|
|
DestroyDetector(detector);
|
|
|
|
|
detector = IntPtr.Zero;
|
|
|
|
|
}
|
|
|
|
|
step = 5;
|
|
|
|
|
detector = CreateDetector($"./models/{task.modelName}");
|
|
|
|
|
if (detector == IntPtr.Zero)
|
|
|
|
|
throw new Exception($"模型({task.modelName})初始化失败!");
|
|
|
|
|
step = 6;
|
|
|
|
|
preModelName = task.modelName;
|
|
|
|
|
}
|
|
|
|
|
//源图
|
|
|
|
|
//Bitmap bmp = yolo1.Read2Bmp(file_path);
|
|
|
|
|
//切割图像,输入图像格式14208*10640
|
|
|
|
|
stopwatch.Start();
|
|
|
|
|
//task.resizeBmp = OpenCVUtil.resize( task.bmp.Clone(), task.resize.Width, task.resize.Height);//在外面已做了resize
|
|
|
|
|
|
|
|
|
|
//Cv2.CvtColor(task.bmp, task.bmpBgr2rgb, ColorConversionCodes.BGR2RGB);
|
|
|
|
|
//task.bmps_cut = OpenCVToCutsMat(task.bmpBgr2rgb, image_width, image_hight); //这里cut时之前加的clone
|
|
|
|
|
step = 7;
|
|
|
|
|
task.bmps_cut = OpenCVToCutsMat(task.bmp, image_width, image_hight); //这里cut时之前加的clone
|
|
|
|
|
stopwatch.Stop();
|
|
|
|
|
task.stopwatch[0] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
|
|
|
|
|
//Resize图像
|
|
|
|
|
//stopwatch.Restart();
|
|
|
|
|
//task.bmps_resize = yolo1.OpenCVToResizesMat(task.bmps_cut, task.resize.Width, task.resize.Height);
|
|
|
|
|
//stopwatch.Stop();
|
|
|
|
|
//task.stopwatch[1] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
|
|
|
|
|
//预处理模型
|
|
|
|
|
//stopwatch.Restart();
|
|
|
|
|
//task.tensors = yolo1.PreprocessImageMat(task.bmps_resize);
|
|
|
|
|
//stopwatch.Stop();
|
|
|
|
|
//task.stopwatch[2] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
step = 8;
|
|
|
|
|
lock (taskOperationList)
|
|
|
|
|
{
|
|
|
|
|
taskOperationList.Add(task);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(1, taskOperationList.Count, null, null);
|
|
|
|
|
}
|
|
|
|
|
step = 9;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"DefectLib task1 err({step}):" + ex.Message);
|
|
|
|
|
task.isSucceed = false;
|
|
|
|
|
task.resultInfo = ex.Message;
|
|
|
|
|
callback(task);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
//推理
|
|
|
|
|
private void run2()
|
|
|
|
|
{
|
|
|
|
|
QualifiedLimit qualifiedLimit;
|
|
|
|
|
while (IsInit)
|
|
|
|
|
{
|
|
|
|
|
if (taskOperationList.Count < 1)
|
|
|
|
|
{
|
|
|
|
|
Thread.Sleep(0);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
var task = pop2();
|
|
|
|
|
int cut_count=0,step = 0;
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
if (task != null && task.bmps_cut.Count()>0)
|
|
|
|
|
{
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, "DefectLib tasks 运行推理...");
|
|
|
|
|
cut_count = task.bmps_cut.Count();
|
|
|
|
|
Stopwatch stopwatch = Stopwatch.StartNew();
|
|
|
|
|
//====推理(必需单队列)
|
|
|
|
|
stopwatch.Start();
|
|
|
|
|
// 把数据转为byte数组,【h, w, c】的bgr格式,第一张在前,第二张在后
|
|
|
|
|
byte[] imgData = new byte[image_bytes * cut_count];
|
|
|
|
|
for (int i = 0; i < cut_count; i++)
|
|
|
|
|
Marshal.Copy(task.bmps_cut[i].Data, imgData, image_bytes * i, image_bytes);
|
|
|
|
|
step = 1;
|
|
|
|
|
stopwatch.Stop();
|
|
|
|
|
task.stopwatch[1] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
stopwatch.Restart();
|
|
|
|
|
|
|
|
|
|
task.output = new float[cut_count * detect_elem_size * detect_max_object_num];
|
|
|
|
|
task.output_num = new int[cut_count];
|
|
|
|
|
//执行推理
|
|
|
|
|
step =2;
|
|
|
|
|
bool ok = Detect(detector, ref imgData[0], cut_count, image_width, image_hight, image_channels,
|
|
|
|
|
0.25f, 0.45f, ref task.output[0], task.output.Length, ref task.output_num[0],Config.expand_pixel);
|
|
|
|
|
//bool ok = Detect(_detector, ref imgData[0], imgs.Count, ImageWidth, image_hight, image_channels,
|
|
|
|
|
// 0.25f, 0.45f, ref output[0], output.Length, ref output_num[0]);
|
|
|
|
|
step = 3;
|
|
|
|
|
stopwatch.Stop();
|
|
|
|
|
task.stopwatch[2] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"DefectLib tasks 结果推理={ok}");
|
|
|
|
|
for (int i = 0; i < cut_count; i++)
|
|
|
|
|
task.bmps_cut[i].Dispose();
|
|
|
|
|
if (ok == false)
|
|
|
|
|
throw new Exception($"推理失败或者输入数组太小({cut_count})");
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
lock (taskMakeTagList)
|
|
|
|
|
{
|
|
|
|
|
taskMakeTagList.Add(task);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(2, taskMakeTagList.Count, null, null);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"DefectLib task2 err({step}):({cut_count}){ ex.Message}");
|
|
|
|
|
task.isSucceed = false;
|
|
|
|
|
task.resultInfo = ex.Message;
|
|
|
|
|
callback(task);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2024-03-18 08:53:51 +08:00
|
|
|
|
|
|
|
|
|
private class DefectLabelInfo
|
|
|
|
|
{
|
|
|
|
|
public int x { get; set; }
|
|
|
|
|
public int y { get; set; }
|
|
|
|
|
public int w { get; set; }
|
|
|
|
|
public int h { get; set; }
|
|
|
|
|
public int classId { get; set; }
|
|
|
|
|
public double confidence { get; set; } //置信度
|
|
|
|
|
public double contrast { get; set; }//对比度
|
|
|
|
|
|
|
|
|
|
public double cmW { get; set; }
|
|
|
|
|
public double cmH { get; set; }
|
|
|
|
|
|
|
|
|
|
public int i { get; set; }//小图index
|
|
|
|
|
public int j { get; set; }//缺陷index
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-07 14:03:22 +08:00
|
|
|
|
//打标
|
|
|
|
|
private void run3()
|
|
|
|
|
{
|
|
|
|
|
QualifiedLimit qualifiedLimit;
|
|
|
|
|
while (IsInit)
|
|
|
|
|
{
|
|
|
|
|
if (taskMakeTagList.Count < 1)
|
|
|
|
|
{
|
|
|
|
|
Thread.Sleep(0);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
var task = pop3();
|
|
|
|
|
int liStep = 0;
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
Stopwatch stopwatch = Stopwatch.StartNew();
|
|
|
|
|
stopwatch.Restart();
|
|
|
|
|
int cut_count = task.bmps_cut.Count();//上面bmps_cut已销毁
|
|
|
|
|
int colNum = task.bmp.Width / image_width;
|
|
|
|
|
int rowNum = task.bmp.Height / image_hight;
|
|
|
|
|
int count = 0;
|
|
|
|
|
liStep = 3;
|
2024-03-18 08:53:51 +08:00
|
|
|
|
|
|
|
|
|
//车用革去除接头处横档误判
|
|
|
|
|
bool haveJieTou = false;
|
|
|
|
|
List<DefectLabelInfo> DefectLabelInfoList = new List<DefectLabelInfo>();
|
|
|
|
|
|
2024-03-07 14:03:22 +08:00
|
|
|
|
for (int i = 0; i < cut_count; i++)
|
|
|
|
|
{
|
|
|
|
|
liStep = i * 100;
|
|
|
|
|
task.resultInfo += $"第 {i}/{cut_count} 张小图(大图索引{task.photoIndex}): 缺陷数 = {task.output_num[i]}\n";
|
|
|
|
|
//task.resultInfo +=$"大图({task.tag})[{task.bmp.Width}*{task.bmp.Height}],第 {i + 1}/{cut_count} 张小图[{task.bmps_cut[i].Width}*{task.bmps_cut[i].Height}]: 瑕疵output_num = {output_num[i]}\n";
|
2024-03-18 08:53:51 +08:00
|
|
|
|
#region 检测信息汇总
|
|
|
|
|
for (int j = 0; j < task.output_num[i]; j++)//缺陷数
|
|
|
|
|
{
|
|
|
|
|
liStep += j;//0
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"-------");
|
|
|
|
|
int index = count * detect_elem_size;
|
|
|
|
|
|
|
|
|
|
// 打印输出信息(示例代码,根据实际情况进行修改和格式化)
|
|
|
|
|
// 获取输出信息
|
|
|
|
|
int x = (int)task.output[index];
|
|
|
|
|
int y = (int)task.output[index + 1];
|
|
|
|
|
int w = (int)task.output[index + 2];
|
|
|
|
|
int h = (int)task.output[index + 3];
|
|
|
|
|
int classId = (int)task.output[index + 4];
|
|
|
|
|
double confidence = Math.Round(task.output[index + 5], 2); //置信度
|
|
|
|
|
double contrast = Math.Round(task.output[index + 6], 3);//对比度
|
|
|
|
|
//y = image_hight-y-h;//转到右下角为原点
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
|
|
var cmW = Math.Round(w * task.widthRatio / Config.cm2px_x, 2);
|
|
|
|
|
var cmH = Math.Round(h * task.widthRatio / Config.cm2px_y, 2);
|
|
|
|
|
// 打印输出信息
|
|
|
|
|
task.resultInfo += $"----{i}----col:{i % colNum}/{colNum} row:{i / colNum}/{colNum}-----------\n目标:{j + 1} 类别ID:{classId} 置信度:{confidence} 对比度:{contrast} 坐标:({x},{y})-({x + w},{y + h}) 宽高:w={w},h={h}; \n";
|
|
|
|
|
|
|
|
|
|
DefectLabelInfoList.Add(new DefectLabelInfo()
|
|
|
|
|
{
|
|
|
|
|
x = (int)task.output[index],
|
|
|
|
|
y = (int)task.output[index + 1],
|
|
|
|
|
w = (int)task.output[index + 2],
|
|
|
|
|
h = (int)task.output[index + 3],
|
|
|
|
|
classId = (int)task.output[index + 4],
|
|
|
|
|
confidence = Math.Round(task.output[index + 5], 2), //置信度
|
|
|
|
|
contrast = Math.Round(task.output[index + 6], 3),//对比度
|
|
|
|
|
cmW = Math.Round(w * task.widthRatio / Config.cm2px_x, 2),
|
|
|
|
|
cmH = Math.Round(h * task.widthRatio / Config.cm2px_y, 2),
|
|
|
|
|
i = i,
|
|
|
|
|
j = j,
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endregion
|
|
|
|
|
#if false
|
2024-03-07 14:03:22 +08:00
|
|
|
|
for (int j = 0; j < task.output_num[i]; j++)//缺陷数
|
|
|
|
|
{
|
|
|
|
|
liStep += j;//0
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"-------");
|
|
|
|
|
int index = count * detect_elem_size;
|
|
|
|
|
|
|
|
|
|
// 打印输出信息(示例代码,根据实际情况进行修改和格式化)
|
|
|
|
|
// 获取输出信息
|
|
|
|
|
int x = (int)task.output[index];
|
|
|
|
|
int y = (int)task.output[index + 1];
|
|
|
|
|
int w = (int)task.output[index + 2];
|
|
|
|
|
int h = (int)task.output[index + 3];
|
|
|
|
|
int classId = (int)task.output[index + 4];
|
|
|
|
|
double confidence = Math.Round(task.output[index + 5],2); //置信度
|
|
|
|
|
double contrast = Math.Round(task.output[index + 6], 3);//对比度
|
|
|
|
|
//y = image_hight-y-h;//转到右下角为原点
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
|
|
var cmW = Math.Round(w * task.widthRatio / Config.cm2px_x, 2);
|
|
|
|
|
var cmH = Math.Round(h * task.widthRatio / Config.cm2px_y, 2);
|
|
|
|
|
// 打印输出信息
|
|
|
|
|
task.resultInfo += $"----{i}----col:{i % colNum}/{colNum} row:{i / colNum}/{colNum}-----------\n目标:{j + 1} 类别ID:{classId} 置信度:{confidence} 对比度:{contrast} 坐标:({x},{y})-({x + w},{y + h}) 宽高:w={w},h={h}; \n";
|
|
|
|
|
//是否满足此产品标准
|
|
|
|
|
if (task.qualifiedLimitList != null && task.qualifiedLimitList.Count > 0)
|
2024-03-18 08:53:51 +08:00
|
|
|
|
{
|
2024-03-07 14:03:22 +08:00
|
|
|
|
qualifiedLimit = task.qualifiedLimitList.FirstOrDefault(m => m.Code == Config.getDefectCode(classId));
|
|
|
|
|
if (qualifiedLimit != null)
|
|
|
|
|
{
|
|
|
|
|
//if ((qualifiedLimit.ZXD > 0 && qualifiedLimit.ZXD > confidence)
|
|
|
|
|
// || (qualifiedLimit.ContrastTop + qualifiedLimit.ContrastLower > 0 && x> qualifiedLimit.ContrastLower && x < qualifiedLimit.ContrastTop)
|
|
|
|
|
// || (qualifiedLimit.Area > 0 && qualifiedLimit.Area > cmW * cmH))
|
|
|
|
|
if (confidence <= qualifiedLimit.ZXD)//confidence > qualifiedLimit.ZXD 是瑕疵 才继续判断下面的两个条件
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 置信度不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//下限<对比度<上限:不是瑕疵
|
|
|
|
|
var ContrastTotal = qualifiedLimit.ContrastTop + qualifiedLimit.ContrastLower;
|
|
|
|
|
if (qualifiedLimit.IsOR)
|
|
|
|
|
{
|
|
|
|
|
if (!(
|
|
|
|
|
(qualifiedLimit.Area <= 0 || cmW * cmH >= qualifiedLimit.Area) ||
|
|
|
|
|
(ContrastTotal <= 0 || (contrast < qualifiedLimit.ContrastLower || contrast > qualifiedLimit.ContrastTop))))
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断不是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (!(
|
|
|
|
|
(qualifiedLimit.Area<=0 || cmW * cmH >= qualifiedLimit.Area) &&
|
|
|
|
|
(ContrastTotal <=0 || (contrast < qualifiedLimit.ContrastLower || contrast > qualifiedLimit.ContrastTop))))
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断不是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-18 08:53:51 +08:00
|
|
|
|
|
2024-03-07 14:03:22 +08:00
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
liStep++;//1
|
|
|
|
|
//打标
|
|
|
|
|
var point1 = new OpenCvSharp.Point((i % colNum) * image_width + x, (i / colNum) * image_hight + y);
|
|
|
|
|
var point2 = new OpenCvSharp.Point(point1.X + w, point1.Y + h);
|
|
|
|
|
liStep++;//2
|
|
|
|
|
task.resultInfo += $" 转换到大图坐标(px):p1={point1.X},{point1.Y}; p2={point2.X},{point2.Y}\n";
|
|
|
|
|
Cv2.Rectangle(task.bmpTag, point1, point2, new Scalar(0.0, 0.0, 255.0), 1);//画打标点
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"保存第 {count} 行缺陷信息;");
|
|
|
|
|
var cmX = Math.Round(point1.X * task.widthRatio / Config.cm2px_x, 2);
|
|
|
|
|
var cmY = Math.Round((task.bmp.Height-point1.Y-h) * task.widthRatio / Config.cm2px_y, 2);//外面计Y从右下角为原点
|
|
|
|
|
liStep++;//3
|
|
|
|
|
task.resultInfo += $" 转换到大图坐标(cm)[widthRatio={task.widthRatio}]:x={cmX},y={cmY}; w={cmW},h={cmH}\n";
|
|
|
|
|
task.excelTable.Rows.Add($"{task.photoIndex}", cmX, cmY, cmW, cmH, j + 1, classId, confidence, contrast);
|
|
|
|
|
|
|
|
|
|
liStep++;//4
|
|
|
|
|
//切缺陷小图
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"保存第 {count} 个缺陷小图;");
|
|
|
|
|
int left, top, decX, decY;
|
|
|
|
|
decX = (w > 236 ? 20 : 256 - w) / 2;
|
|
|
|
|
decY = (h > 236 ? 20 : 256 - h) / 2;
|
|
|
|
|
left = point1.X - decX;
|
|
|
|
|
top = point1.Y - decY;
|
|
|
|
|
if (left < 0) left = 0;
|
|
|
|
|
if (top < 0) top = 0;
|
|
|
|
|
|
|
|
|
|
int width = w + decX * 2;
|
|
|
|
|
int height = h + decY * 2;
|
|
|
|
|
if (left + width > task.bmp.Width - 1) width = task.bmp.Width - left - 1;
|
|
|
|
|
if (top + height > task.bmp.Height - 1) height = task.bmp.Height - top - 1;
|
|
|
|
|
liStep++;//5
|
|
|
|
|
Rect roi = new Rect(left, top, width, height);
|
|
|
|
|
liStep++;//6
|
|
|
|
|
if (height < 1 || width < 1)
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 打标到大图坐标Rect(px):left={left},top={top}; width={width},height={height}\n";
|
|
|
|
|
task.resultInfo += $" test point1.Y={point1.Y},h={h}; top={top},mat.Height={ task.bmp.Height}\n================\n";
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now,WarningEnum.Normal, task.resultInfo);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//保存
|
|
|
|
|
//string filename = $"{Config.appBasePath}\\temp\\{task.tag}\\{task.tag}_X{mmX.ToString()}_Y{mmY.ToString()}_W{mmW.ToString()}_H{mmH.ToString()}_目标{j + 1}_类别{classId}_置信度{confidence}.bmp";
|
|
|
|
|
//OpenCvSharp.Extensions.BitmapConverter.ToBitmap(new Mat(task.bmp, roi)).Save(filename, ImageFormat.Jpeg);
|
|
|
|
|
|
|
|
|
|
task.lstDefectBmp.Add(new Mat(task.bmpTag, roi).Clone());
|
|
|
|
|
liStep++;//7
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"缺陷小图数量:{task.lstDefectBmp.Count}");
|
|
|
|
|
}
|
2024-03-18 08:53:51 +08:00
|
|
|
|
#endif
|
2024-03-07 14:03:22 +08:00
|
|
|
|
}
|
|
|
|
|
|
2024-03-18 08:53:51 +08:00
|
|
|
|
//结果过滤
|
|
|
|
|
#region 结果过滤
|
|
|
|
|
//降序排序,先得到是否有接头检出
|
|
|
|
|
List<DefectLabelInfo> DefectLabelInfoListByClassID = DefectLabelInfoList.OrderByDescending(t => t.classId).ToList();//降序
|
|
|
|
|
for (int q = 0; q < DefectLabelInfoList.Count; q++)
|
|
|
|
|
{
|
|
|
|
|
//是否满足此产品标准
|
|
|
|
|
if (task.qualifiedLimitList != null && task.qualifiedLimitList.Count > 0)
|
|
|
|
|
{
|
|
|
|
|
qualifiedLimit = task.qualifiedLimitList.FirstOrDefault(m => m.Code == Config.getDefectCode(DefectLabelInfoList[q].classId));
|
|
|
|
|
if (qualifiedLimit != null)
|
|
|
|
|
{
|
|
|
|
|
//if ((qualifiedLimit.ZXD > 0 && qualifiedLimit.ZXD > confidence)
|
|
|
|
|
// || (qualifiedLimit.ContrastTop + qualifiedLimit.ContrastLower > 0 && x> qualifiedLimit.ContrastLower && x < qualifiedLimit.ContrastTop)
|
|
|
|
|
// || (qualifiedLimit.Area > 0 && qualifiedLimit.Area > cmW * cmH))
|
|
|
|
|
if (DefectLabelInfoList[q].confidence <= qualifiedLimit.ZXD)//confidence > qualifiedLimit.ZXD 是瑕疵 才继续判断下面的两个条件
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 置信度不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//下限<对比度<上限:不是瑕疵
|
|
|
|
|
var ContrastTotal = qualifiedLimit.ContrastTop + qualifiedLimit.ContrastLower;
|
|
|
|
|
if (qualifiedLimit.IsOR)
|
|
|
|
|
{
|
|
|
|
|
if (!(
|
|
|
|
|
(qualifiedLimit.Area <= 0 || DefectLabelInfoList[q].cmW * DefectLabelInfoList[q].cmH >= qualifiedLimit.Area) ||
|
|
|
|
|
(ContrastTotal <= 0 || (DefectLabelInfoList[q].contrast < qualifiedLimit.ContrastLower || DefectLabelInfoList[q].contrast > qualifiedLimit.ContrastTop))))
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断不是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (!(
|
|
|
|
|
(qualifiedLimit.Area <= 0 || DefectLabelInfoList[q].cmW * DefectLabelInfoList[q].cmH >= qualifiedLimit.Area) &&
|
|
|
|
|
(ContrastTotal <= 0 || (DefectLabelInfoList[q].contrast < qualifiedLimit.ContrastLower || DefectLabelInfoList[q].contrast > qualifiedLimit.ContrastTop))))
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 不满足此产品瑕疵标准,跳过! \n";
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断不是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (Config.getDefectCode(DefectLabelInfoList[q].classId) == "jietou")
|
|
|
|
|
haveJieTou = true;
|
|
|
|
|
if(haveJieTou && (Config.getDefectCode(DefectLabelInfoList[q].classId) == "hengdang"))
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 判断为接头处横档,跳过! \n";
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"判断是瑕疵:类别ID:{classId}; 置信度({confidence},[{qualifiedLimit.ZXD}]); isOr({qualifiedLimit.IsOR}); 面积({cmW * cmH},[{ qualifiedLimit.Area}]); 对比度({contrast},[{qualifiedLimit.ContrastLower}-{qualifiedLimit.ContrastTop}])");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
liStep++;//1
|
|
|
|
|
//打标
|
|
|
|
|
var point1 = new OpenCvSharp.Point((DefectLabelInfoList[q].i % colNum) * image_width + DefectLabelInfoList[q].x, (DefectLabelInfoList[q].i / colNum) * image_hight + DefectLabelInfoList[q].y);
|
|
|
|
|
var point2 = new OpenCvSharp.Point(point1.X + DefectLabelInfoList[q].w, point1.Y + DefectLabelInfoList[q].h);
|
|
|
|
|
liStep++;//2
|
|
|
|
|
task.resultInfo += $" 转换到大图坐标(px):p1={point1.X},{point1.Y}; p2={point2.X},{point2.Y}\n";
|
|
|
|
|
Cv2.Rectangle(task.bmpTag, point1, point2, new Scalar(0.0, 0.0, 255.0), 1);//画打标点
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"保存第 {count} 行缺陷信息;");
|
|
|
|
|
var cmX = Math.Round(point1.X * task.widthRatio / Config.cm2px_x, 2);
|
|
|
|
|
var cmY = Math.Round((task.bmp.Height - point1.Y - DefectLabelInfoList[q].h) * task.widthRatio / Config.cm2px_y, 2);//外面计Y从右下角为原点
|
|
|
|
|
liStep++;//3
|
|
|
|
|
task.resultInfo += $" 转换到大图坐标(cm)[widthRatio={task.widthRatio}]:x={cmX},y={cmY}; w={DefectLabelInfoList[q].cmW},h={DefectLabelInfoList[q].cmH}\n";
|
|
|
|
|
task.excelTable.Rows.Add($"{task.photoIndex}", cmX, cmY, DefectLabelInfoList[q].cmW, DefectLabelInfoList[q].cmH, DefectLabelInfoList[q].j + 1, DefectLabelInfoList[q].classId, DefectLabelInfoList[q].confidence, DefectLabelInfoList[q].contrast);
|
|
|
|
|
|
|
|
|
|
liStep++;//4
|
|
|
|
|
//切缺陷小图
|
|
|
|
|
//WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"保存第 {count} 个缺陷小图;");
|
|
|
|
|
int left, top, decX, decY;
|
|
|
|
|
decX = (DefectLabelInfoList[q].w > 236 ? 20 : 256 - DefectLabelInfoList[q].w) / 2;
|
|
|
|
|
decY = (DefectLabelInfoList[q].h > 236 ? 20 : 256 - DefectLabelInfoList[q].h) / 2;
|
|
|
|
|
left = point1.X - decX;
|
|
|
|
|
top = point1.Y - decY;
|
|
|
|
|
if (left < 0) left = 0;
|
|
|
|
|
if (top < 0) top = 0;
|
|
|
|
|
|
|
|
|
|
int width = DefectLabelInfoList[q].w + decX * 2;
|
|
|
|
|
int height = DefectLabelInfoList[q].h + decY * 2;
|
|
|
|
|
if (left + width > task.bmp.Width - 1) width = task.bmp.Width - left - 1;
|
|
|
|
|
if (top + height > task.bmp.Height - 1) height = task.bmp.Height - top - 1;
|
|
|
|
|
liStep++;//5
|
|
|
|
|
Rect roi = new Rect(left, top, width, height);
|
|
|
|
|
liStep++;//6
|
|
|
|
|
if (height < 1 || width < 1)
|
|
|
|
|
{
|
|
|
|
|
task.resultInfo += $" 打标到大图坐标Rect(px):left={left},top={top}; width={width},height={height}\n";
|
|
|
|
|
task.resultInfo += $" test point1.Y={point1.Y},h={DefectLabelInfoList[q].h}; top={top},mat.Height={task.bmp.Height}\n================\n";
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now, WarningEnum.Normal, task.resultInfo);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//保存
|
|
|
|
|
//string filename = $"{Config.appBasePath}\\temp\\{task.tag}\\{task.tag}_X{mmX.ToString()}_Y{mmY.ToString()}_W{mmW.ToString()}_H{mmH.ToString()}_目标{j + 1}_类别{classId}_置信度{confidence}.bmp";
|
|
|
|
|
//OpenCvSharp.Extensions.BitmapConverter.ToBitmap(new Mat(task.bmp, roi)).Save(filename, ImageFormat.Jpeg);
|
|
|
|
|
|
|
|
|
|
task.lstDefectBmp.Add(new Mat(task.bmpTag, roi).Clone());
|
|
|
|
|
liStep++;//7
|
|
|
|
|
}
|
|
|
|
|
#endregion
|
2024-03-07 14:03:22 +08:00
|
|
|
|
liStep = 99;
|
|
|
|
|
stopwatch.Stop();
|
|
|
|
|
task.stopwatch[3] = stopwatch.ElapsedMilliseconds;
|
|
|
|
|
|
|
|
|
|
task.isSucceed = true;
|
|
|
|
|
callback(task);
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
WarningEvent?.Invoke(DateTime.Now,WarningEnum.Low, $"DefectLib task3 err({liStep}):" + ex.Message);
|
|
|
|
|
task.isSucceed = false;
|
|
|
|
|
task.resultInfo = ex.Message;
|
|
|
|
|
callback(task);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
private void callback(DefectTask task)
|
|
|
|
|
{
|
|
|
|
|
//返回成功/失败,异步调用
|
|
|
|
|
if (task.finishEvent != null || (task.finishEvent = finishEvent) != null)
|
|
|
|
|
//task.finishEvent.BeginInvoke(result, errInfo, res => task.finishEvent.EndInvoke(res), null);
|
|
|
|
|
System.Threading.ThreadPool.QueueUserWorkItem(waitCallback, task);
|
|
|
|
|
}
|
|
|
|
|
//异步回调
|
|
|
|
|
WaitCallback waitCallback = new WaitCallback(o =>
|
|
|
|
|
{
|
|
|
|
|
var task = (DefectTask)o;
|
|
|
|
|
task.finishEvent(task);
|
|
|
|
|
});
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 切割(先左右,后上下)
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="mat"></param>
|
|
|
|
|
/// <param name="width"></param>
|
|
|
|
|
/// <param name="height"></param>
|
|
|
|
|
/// <returns></returns>
|
|
|
|
|
private Mat[] OpenCVToCutsMat(Mat mat, int width, int height)
|
|
|
|
|
{
|
|
|
|
|
Mat[] array = new Mat[mat.Width / width * mat.Height / height];
|
|
|
|
|
int num = 0;
|
|
|
|
|
for (int i = 0; i < mat.Height / height; i++)
|
|
|
|
|
{
|
|
|
|
|
for (int j = 0; j < mat.Width / width; j++)
|
|
|
|
|
{
|
|
|
|
|
int x = j * width;
|
|
|
|
|
int y = i * height;
|
|
|
|
|
System.Drawing.Rectangle rectangle = new System.Drawing.Rectangle(x, y, width, height);
|
|
|
|
|
Rect roi = new Rect(rectangle.X, rectangle.Y, rectangle.Width, rectangle.Height);
|
|
|
|
|
array[num] = new Mat(mat, roi).Clone();
|
|
|
|
|
num++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return array;
|
|
|
|
|
}
|
|
|
|
|
public class DefectTask
|
|
|
|
|
{
|
|
|
|
|
public DefectTask()
|
|
|
|
|
{
|
|
|
|
|
// 创建一个 DataTable 对象来存储数据
|
|
|
|
|
excelTable = new DataTable("MyData");
|
|
|
|
|
// 添加列到 DataTable
|
|
|
|
|
excelTable.Columns.Add("FileName", typeof(string));
|
|
|
|
|
excelTable.Columns.Add("X", typeof(decimal));
|
|
|
|
|
excelTable.Columns.Add("Y", typeof(decimal));
|
|
|
|
|
excelTable.Columns.Add("W", typeof(decimal));
|
|
|
|
|
excelTable.Columns.Add("H", typeof(decimal));
|
|
|
|
|
excelTable.Columns.Add("目标", typeof(int));
|
|
|
|
|
excelTable.Columns.Add("类别", typeof(int));
|
|
|
|
|
excelTable.Columns.Add("置信度", typeof(decimal));
|
|
|
|
|
excelTable.Columns.Add("对比度", typeof(decimal));
|
|
|
|
|
// 向 DataTable 中添加数据行
|
|
|
|
|
//excelTable.Rows.Add("John Doe", 30);
|
|
|
|
|
//excelTable.Rows.Add("Jane Smith", 25);
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 模型名字
|
|
|
|
|
/// </summary>
|
|
|
|
|
public string modelName;
|
|
|
|
|
|
|
|
|
|
public Models.Records record;
|
|
|
|
|
//public string bmpPath;//源图路径(仅目录)
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 源图(resize后的)
|
|
|
|
|
/// </summary>
|
|
|
|
|
public Mat bmp;
|
|
|
|
|
//public Mat bmpBgr2rgb=new Mat();
|
|
|
|
|
|
|
|
|
|
public System.Drawing.Size resize = new System.Drawing.Size(224, 224);
|
|
|
|
|
//public Mat resizeBmp;//resize后 BGR2RGB图,只用于识别
|
|
|
|
|
public Mat bmpTag;
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 图片索引0-n
|
|
|
|
|
/// </summary>
|
|
|
|
|
public int photoIndex;//excel中对应的图像路径标识
|
|
|
|
|
public float widthRatio;//宽度比例,resize前/resize后
|
|
|
|
|
//切割后
|
|
|
|
|
public Mat[] bmps_cut;
|
|
|
|
|
|
|
|
|
|
//用于比对参数 }//置信度 面积 对比度
|
|
|
|
|
public List<QualifiedLimit> qualifiedLimitList;
|
|
|
|
|
|
|
|
|
|
//推理后结果用于打标
|
|
|
|
|
public float[] output;
|
|
|
|
|
public int[] output_num;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 完成后回调
|
|
|
|
|
/// </summary>
|
|
|
|
|
public Action<DefectTask> finishEvent;
|
|
|
|
|
//==结果返回
|
|
|
|
|
public bool isSucceed;//转换是否成功
|
|
|
|
|
public string resultInfo = "";//成功或失败信息
|
|
|
|
|
|
|
|
|
|
public List<Mat> lstDefectBmp=new List<Mat>();
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// fileIndex,x_mm,y_mm,w_mm,h_mm,目标,类别ID,置信度
|
|
|
|
|
/// </summary>
|
|
|
|
|
public DataTable excelTable=new DataTable();
|
|
|
|
|
public long[] stopwatch = new long[4];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void add(DefectTask task)
|
|
|
|
|
{
|
|
|
|
|
lock (taskList)
|
|
|
|
|
{
|
|
|
|
|
taskList.Add(task);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(0, taskList.Count, null, null);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private DefectTask pop()
|
|
|
|
|
{
|
|
|
|
|
lock (taskList)
|
|
|
|
|
{
|
|
|
|
|
if (taskList.Count < 1)
|
|
|
|
|
return null;
|
|
|
|
|
|
|
|
|
|
//int index = 0;// taskList.FindIndex(p => { return p.isSync; });
|
|
|
|
|
//if (index < 0) index = 0;
|
|
|
|
|
var task = taskList[0];
|
|
|
|
|
taskList.RemoveAt(0);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(0, taskList.Count, null, null);
|
|
|
|
|
return task;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
private DefectTask pop2()
|
|
|
|
|
{
|
|
|
|
|
lock (taskOperationList)
|
|
|
|
|
{
|
|
|
|
|
if (taskOperationList.Count < 1)
|
|
|
|
|
return null;
|
|
|
|
|
|
|
|
|
|
//int index = 0;// taskList.FindIndex(p => { return p.isSync; });
|
|
|
|
|
//if (index < 0) index = 0;
|
|
|
|
|
var task = taskOperationList[0];
|
|
|
|
|
taskOperationList.RemoveAt(0);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(1, taskOperationList.Count, null, null);
|
|
|
|
|
return task;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
private DefectTask pop3()
|
|
|
|
|
{
|
|
|
|
|
lock (taskMakeTagList)
|
|
|
|
|
{
|
|
|
|
|
if (taskMakeTagList.Count < 1)
|
|
|
|
|
return null;
|
|
|
|
|
|
|
|
|
|
//int index = 0;// taskList.FindIndex(p => { return p.isSync; });
|
|
|
|
|
//if (index < 0) index = 0;
|
|
|
|
|
var task = taskMakeTagList[0];
|
|
|
|
|
taskMakeTagList.RemoveAt(0);
|
|
|
|
|
QueueCountEvent?.BeginInvoke(2, taskMakeTagList.Count, null, null);
|
|
|
|
|
return task;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void Dispose()
|
|
|
|
|
{
|
|
|
|
|
stop();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|