geboshi_V1/LeatherProject/GeBoShi/SysCtrl/OpencvUtils.cs

464 lines
19 KiB
C#
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace GeBoShi.SysCtrl
{
public static class OpencvUtils
{
public static int image_width = 2048;
public static int image_height = 2048;
#region
public static Mat Resize(Mat mat, int width, int height, out int xw)
{
OpenCvSharp.Size dsize = new OpenCvSharp.Size(width, height);
Mat mat2 = new Mat();
//Cv2.Resize(mat, mat2, dsize);
ResizeUniform(mat, dsize, out mat2, out xw);
return mat2;
}
/// <summary>
/// 等比例缩放
/// </summary>
/// <param name="src"></param>
/// <param name="dst_size"></param>
/// <param name="dst"></param>
/// <returns></returns>
public static int ResizeUniform(Mat src, Size dst_size, out Mat dst, out int xw)
{
xw = 0;
int w = src.Cols;
int h = src.Rows;
int dst_w = dst_size.Width;
int dst_h = dst_size.Height;
//std::cout << "src: (" << h << ", " << w << ")" << std::endl;
dst = new Mat(dst_h, dst_w, MatType.CV_8UC3, new Scalar(114, 114, 114));
float[] ratio = new float[2];
float ratio_src = w * 1.0f / h;
float ratio_dst = dst_w * 1.0f / dst_h;
int tmp_w = 0;
int tmp_h = 0;
if (ratio_src > ratio_dst)
{
tmp_w = dst_w;
tmp_h = (int)(dst_w * 1.0f / w) * h;
ratio[0] = (float)w / (float)tmp_w;
ratio[1] = (float)h / (float)tmp_h;
}
else if (ratio_src < ratio_dst)
{
tmp_h = dst_h;
tmp_w = (int)((dst_h * 1.0f / h) * w);
ratio[0] = (float)w / (float)tmp_w;
ratio[1] = (float)h / (float)tmp_h;
}
else
{
Cv2.Resize(src, dst, dst_size);
ratio[0] = (float)w / (float)tmp_w;
ratio[1] = (float)h / (float)tmp_h;
return 0;
}
//std::cout << "tmp: (" << tmp_h << ", " << tmp_w << ")" << std::endl;
Mat tmp = new Mat();
Cv2.Resize(src, tmp, new Size(tmp_w, tmp_h));
unsafe
{
if (tmp_w != dst_w)
{ //高对齐,宽没对齐
int index_w = (int)((dst_w - tmp_w) / 2.0);
xw = index_w;
//std::cout << "index_w: " << index_w << std::endl;
for (int i = 0; i < dst_h; i++)
{
Buffer.MemoryCopy(IntPtr.Add(tmp.Data, i * tmp_w * 3).ToPointer(), IntPtr.Add(dst.Data, i * dst_w * 3 + index_w * 3).ToPointer(), tmp_w * 3, tmp_w * 3);
}
}
else if (tmp_h != dst_h)
{ //宽对齐, 高没有对齐
int index_h = (int)((dst_h - tmp_h) / 2.0);
//std::cout << "index_h: " << index_h << std::endl;
Buffer.MemoryCopy(tmp.Data.ToPointer(), IntPtr.Add(dst.Data, index_h * dst_w * 3).ToPointer(), tmp_w * tmp_h * 3, tmp_w * tmp_h * 3);
}
else
{
}
}
return 0;
}
public static Mat ResizeMat(Mat mat, int width, int height)
{
OpenCvSharp.Size dsize = new OpenCvSharp.Size(width, height);
Mat mat2 = new Mat();
Cv2.Resize(mat, mat2, dsize);
return mat2;
}
/// <summary>
/// 计算合理宽幅
/// </summary>
/// <param name="sumWidth">多个相机图像总宽(外部去除重合部分)</param>
/// <returns></returns>
public static int GetWidthForResize(int sumWidth)
{
//保证计算8x2 16个小图
int count = (int)Math.Round(sumWidth * 1.0f / image_width, 0);
count = 8;
return count * image_width;
//int count = sumWidth / image_width;
////int remainder = sumWidth % image_width;
//if (count % 2 == 0)
// return count * image_width;
//else
// return count * image_width+ image_width;
}
/// <summary>
/// 裁切指定区域
/// </summary>
/// <param name="mat"></param>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="width"></param>
/// <param name="height"></param>
/// <returns></returns>
public static Mat CutImage(Mat mat, int x, int y, int width, int height)
{
Rect roi = new Rect(x, y, width, height);
return new Mat(mat, roi).Clone();
}
#endregion
#region
/// <summary>
/// 裁边
/// </summary>
/// <param name="mat_rgb"></param>
/// <param name="isLeft"></param>
/// <param name="marginHoleWidth"></param>
/// <param name="marginWidth"></param>
/// <returns></returns>
public static Mat getMaxInsetRect2(Mat mat_rgb, bool isLeft, int marginHoleWidth, out int marginWidth)
{
int bian = 3500;
Rect Roi;
if (!isLeft)
Roi = new Rect(mat_rgb.Width - bian, 0, bian, mat_rgb.Height);
else
Roi = new Rect(0, 0, bian, mat_rgb.Height);
int type = isLeft ? 1 : 0;
int len = EdgeClipping2(mat_rgb, type, Roi, isLeft);
#if false
//Mat mat_rgb = new Mat("E:\\CPL\\测试代码\\边缘检测\\test\\test\\test\\img\\19.bmp");
Mat image_gray = new Mat();
Cv2.CvtColor(mat_rgb, image_gray, ColorConversionCodes.BGR2GRAY);
//cvtColor(image_RGB, image, COLOR_RGB2GRAY);
int height = image_gray.Rows;
int width = image_gray.Cols;
// 算法定义取均分5段图片的五条横线经过一系列处理之后二值化找到沿边位置然后取均值作为直边在缩进一段有针眼的位置
// 定义每段的行数
int num_rows = 5;
int segment_height = height / num_rows - 1;
// 定义空数组保存结果
int[] total = new int[num_rows];
// 平均截取5行数据并处理图像
for (int i = 0; i < num_rows; i++)
{
// 截取当前行的图像
int start_row = i * segment_height;
Rect roi = new Rect(0, start_row, width, 1);
Mat current_segment = image_gray.Clone(roi);
// 对当前行的图像进行平滑处理
Mat smoothed_image = new Mat();
Cv2.GaussianBlur(current_segment, smoothed_image, new Size(5, 1), 0);
// 计算当前行的灰度直方图
Mat absolute_histo = new Mat();
Cv2.CalcHist(new Mat[] { smoothed_image }, new int[] { 0 }, new Mat(), absolute_histo, 1, new int[] { 256 }, new Rangef[] { new Rangef(0, 256) });
Cv2.GaussianBlur(current_segment, smoothed_image, new Size(19, 1), 0);
// 对图片进行分割i+1
//double otsu_threshold;
//threshold(smoothed_image, smoothed_image, 0, 255, THRESH_BINARY + THRESH_OTSU, &otsu_threshold);
Cv2.Threshold(smoothed_image, smoothed_image, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
// 使用形态学操作进行孔洞填充
Mat kernel = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(25, 1));
Mat filled_image = new Mat();
Cv2.MorphologyEx(smoothed_image, filled_image, MorphTypes.Close, kernel);
// 取较长的一个值作为皮革的宽度
int num_255 = Cv2.CountNonZero(filled_image);
int length_t = (num_255 > width / 2) ? num_255 : width - num_255;
total[i] = (length_t);
API.OutputDebugString($"getMaxInsetRect2: 【{i + 1}】{length_t}={num_255}|{width}");
}
// 取平均值作为宽度
int length = (int)total.Average();
marginWidth = width-length;
#endif
int length = (len > mat_rgb.Width / 2) ? len : mat_rgb.Width - len;
marginWidth = mat_rgb.Width - length;
// 判断数据是否异常,判断当前线段的宽度是否大于设定像素的偏差
//int abnormal_pxl = 200;
//for (int i = 0; i < num_rows; i++)
//{
// if (Math.Abs(total[i] - length) > abnormal_pxl)
// throw new Exception("数据异常,当段图片的宽度有问题!");
//}
//右侧相机拍摄产品边缘位于右侧判断缩进100像素去点针眼
//Cv2.Line(mat_rgb, new Point(length - 100, 0), new Point(length - 100, height), new Scalar(255, 0, 0), 20);
////左侧相机拍摄产品边缘位于左侧判断缩进100像素去点针眼
//Cv2.Line(mat_rgb, new Point(width - length + 100, 0), new Point(width - length + 100, height), new Scalar(0, 255, 0), 20);
//int decWidth = width - length + marginHoleWidth;
//if (isLeft)
// return cutImage(mat_rgb, decWidth, 0, width- decWidth, height);
//else
// return cutImage(mat_rgb, 0, 0, width - decWidth, height);
//API.OutputDebugString($"getMaxInsetRect2:margin={marginWidth}length={length}({marginHoleWidth}),isLeft={isLeft},mat_rgb={mat_rgb.Width}*{mat_rgb.Height},w={length - marginHoleWidth},h={mat_rgb.Height}");
if (isLeft)
return CutImage(mat_rgb, mat_rgb.Width - length + marginHoleWidth, 0, length - marginHoleWidth, mat_rgb.Height);
else
return CutImage(mat_rgb, 0, 0, length - marginHoleWidth, mat_rgb.Height);
}
/// <summary>
/// 寻边算法
/// </summary>
/// <param name="image"></param>
/// <param name="FindType"></param>
/// <param name="Roi"></param>
/// <param name="IsLeft"></param>
/// <returns></returns>
public static int EdgeClipping2(Mat image, int FindType, Rect Roi, bool IsLeft)
{
DateTimeOffset startTime = DateTimeOffset.Now;
Mat mat_rgb = image.Clone(Roi);
int height = mat_rgb.Rows;
int width = mat_rgb.Cols;
int sf = 10; //缩放比例
int pix = 5; //获取均值区域长宽像素
int pointNum = 15; //获取找遍点数
int offsetGray = 5; //二值化偏差
//按比例缩放
int sf_height = height / sf;
int sf_width = width / sf;
Cv2.Resize(mat_rgb, mat_rgb, new Size(sf_width, sf_height), 0, 0, InterpolationFlags.Linear);
Mat himg = new Mat();
himg = mat_rgb.Clone();
DateTimeOffset endTime = DateTimeOffset.Now;
//Console.WriteLine("图片缩小(ms): " + (endTime - startTime).TotalMilliseconds.ToString("0.000"));
startTime = DateTimeOffset.Now;
//滤过去除多余噪声
//Cv2.EdgePreservingFilter(himg, himg, EdgePreservingMethods.NormconvFilter);
//Cv2.PyrMeanShiftFiltering(himg, himg, 1, 2, 1);
Cv2.PyrMeanShiftFiltering(himg, himg, 10, 17, 2);
//himg.ImWrite("himg.jpg");
endTime = DateTimeOffset.Now;
//Console.WriteLine("滤过去除多余噪声(ms): " + (endTime - startTime).TotalMilliseconds.ToString("0.000"));
startTime = DateTimeOffset.Now;
//转灰度图
Mat image_gray = new Mat();
Cv2.CvtColor(himg, image_gray, ColorConversionCodes.BGR2GRAY);
//image_gray.ImWrite("image_gray.jpg");
Mat image_Canny = new Mat();
Cv2.Canny(image_gray, image_Canny, 32, 64);
//image_Canny.ImWrite("image_Canny.jpg");
//二值化
Mat image_Otsu = new Mat();
int hDis = sf_height / (pointNum + 2); //去除边缘两点
#if false //二值算法
List<double> LeftAvg = new List<double>();
List<double> RightAvg = new List<double>();
//double thb = Cv2.Threshold(image_gray, image_Otsu, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
#region
for (int i = 0; i < pointNum; i++)
{
Rect roiLeft = new Rect(0, hDis + hDis * i, pix, pix);
Mat current_segmentL = image_gray.Clone(roiLeft);
//Scalar ttr = current_segmentL.Mean();
LeftAvg.Add(current_segmentL.Mean().Val0);
Rect roiRight = new Rect(sf_width - pix, hDis + hDis * i, pix, pix);
Mat current_segmentR = image_gray.Clone(roiRight);
RightAvg.Add(current_segmentR.Mean().Val0);
}
double thres = 0;
if (IsLeft)
{
if (LeftAvg.Average() > RightAvg.Average())
thres = RightAvg.Max() + offsetGray;
else
thres = RightAvg.Min() - offsetGray;
}
else
{
if (LeftAvg.Average() > RightAvg.Average())
thres = LeftAvg.Min() - offsetGray;
else
thres = LeftAvg.Max() + offsetGray;
}
//double thres = (RightAvg.Average() + )/2;
#endregion
#endif
#if false
double min, max;
image_gray.MinMaxLoc(out min, out max);
double thres = (min + max) / 2;
#endif
#if false //二值化图片
//Cv2.Threshold(image_gray, image_Otsu, 0, 255, ThresholdTypes.Otsu);
double thb = Cv2.Threshold(image_gray, image_Otsu, thres, 255, ThresholdTypes.Binary);
image_Otsu.ImWrite("Otsu1.jpg");
Cv2.MedianBlur(image_Otsu, image_Otsu, 21);
image_Otsu.ImWrite("Otsu2.jpg");
endTime = DateTimeOffset.Now;
Console.WriteLine("灰度图二值化(ms): " + (endTime - startTime).TotalMilliseconds.ToString("0.000"));
startTime = DateTimeOffset.Now;
#else
image_Otsu = image_Canny;
#endif
// 定义空数组保存结果
int[] total = new int[pointNum];
List<int> total_t = new List<int>();
bool isLeft = FindType == 0 ? true : false;
// 平均截取pointNum行数据并处理图像
for (int i = 0; i < pointNum; i++)
{
// 截取当前行的图像
Rect roi = new Rect(0, hDis + hDis * i, sf_width, 1);
Mat current_segment = image_Otsu.Clone(roi);
#if false
#region
// 对当前行的图像进行平滑处理
Mat smoothed_image2 = new Mat();
Cv2.GaussianBlur(current_segment, smoothed_image2, new Size(5, 1), 0);
// 计算当前行的灰度直方图
Mat absolute_histo2 = new Mat();
Cv2.CalcHist(new Mat[] { smoothed_image2 }, new int[] { 0 }, new Mat(), absolute_histo2, 1, new int[] { 256 }, new Rangef[] { new Rangef(0, 256) });
Cv2.GaussianBlur(current_segment, smoothed_image2, new Size(9, 1), 0);
// 对图片进行分割
//double otsu_threshold;
//threshold(smoothed_image, smoothed_image, 0, 255, THRESH_BINARY + THRESH_OTSU, &otsu_threshold);
double otsu_threshold2 = Cv2.Threshold(smoothed_image2, smoothed_image2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
// 使用形态学操作进行孔洞填充
Mat kernel3 = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(5, 1));
Mat filled_image3 = new Mat();
Cv2.MorphologyEx(smoothed_image2, filled_image3, MorphTypes.Close, kernel3);
#endregion
#else
//Mat filled_image3 = current_segment.Clone();
Mat filled_image3 = current_segment;
#endif
#if true
//从左到右判断边和从右到左判断边
int numX = 0;
byte tempVal = 0;
if (isLeft)
{
tempVal = filled_image3.At<byte>(0, 0);
for (int j = 0; j < filled_image3.Cols; j++)
{
if (filled_image3.At<byte>(0, j) != tempVal)
{
numX = j;
break;
}
}
}
else
{
tempVal = filled_image3.At<byte>(0, filled_image3.Cols - 1);
for (int j = filled_image3.Cols - 1; j >= 0; j--)
{
if (filled_image3.At<byte>(0, j) != tempVal)
{
numX = j;
break;
}
}
}
#else
int numX = Cv2.CountNonZero(filled_image3);
#endif
//int length_t = (numX > (sf_width / 2)) ? numX :sf_width - numX;
int length_t = numX;
total[i] = (length_t);
if (length_t > 0)
total_t.Add(length_t);
}
// 取平均值作为宽度
int length = 0;
if(total_t.Count> 0)
length = (int)total_t.Average();
endTime = DateTimeOffset.Now;
//Console.WriteLine("计算边(ms): " + (endTime - startTime).TotalMilliseconds.ToString("0.000"));
// 判断数据是否异常,判断当前线段的宽度是否大于设定像素的偏差
//int abnormal_pxl = 100 / 4;
//for (int i = 0; i < pointNum; i++)
//{
// if (Math.Abs(total[i] - length) > abnormal_pxl)
// Console.WriteLine("数据异常!");
// //出现数据异常,当段图片的宽度有问题
//}
//乘上换算系数还原
length = length * sf + Roi.X;
return length;
}
#endregion
#region
/// <summary>
/// 合并MAT宽高必需一致
/// </summary>
/// <param name="mats"></param>
/// <param name="isHorizontal"></param>
/// <returns></returns>
public static Mat MergeImage_sameSize(Mat[] mats, bool isHorizontal = true)
{
Mat matOut = new Mat();
if (isHorizontal)
Cv2.HConcat(mats, matOut);//横向拼接
else
Cv2.VConcat(mats, matOut);//纵向拼接
return matOut;
}
#endregion
}
}